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Abstract

Analysis of the maximum of n independent geometrically distributed random variables arises in a variety of
applications in computer science and engineering. Evaluating the mean and variance of the maximum
when n is large presents considerable computational challenges. While approximate formulae have been
proposed in the case where each geometric distribution has the same probability of success, the
heterogeneous case has not received any attention. We derive an epsilon-accurate approximation for both
the mean and the variance in the heterogeneous case. The approximations also apply to the homogeneous
case, and offer something new with their ability to tune the approximation to any desired level of accuracy.
We illustrate the formulae with an application where the heterogeneous context arose quite naturally.

1. Introduction

1.1 Problem Statement

We consider the problem of evaluating the expected value of the maximum of n independent
geometrically distributed random variables. No tractable computational form appears to exist for the case
of large n and heterogeneous geometric random variables. Our interest in this case is motivated by the
following real world engineering problem. In a wireless broadcast transmission system, a transmitter
broadcasts packets from a fixed location to mobile users located at varying distance from the transmitter.
The transmission protocol is to broadcast each packet for as many times as is required in order for each
mobile user to successfully receive the packet. Upon successful reception of the packet, users send an
acknowledgement packet back to the transmitter.  Only after the transmitter has received
acknowledgement packets from each mobile user will it advance to the task of transmitting the next
packet in the sequence.

Let X, denote the number of transmissions required before the i-th user successfully receives the packet

being transmitted. Because each user is a different distance from the transmitter, the probability of
successful reception is typically different for each user, say p,. Assuming that successive transmission

attempts are independent, X, has a geometric distribution with parameter p,. That is,

Pr(X;=x)=p,1-p,)*" , for xe{l,2,...}. The number of times the transmitter needs to send the

packet is then X, = Max X;. Of interest to system designers is the expected value of X, say ,, , and

1<i<n
an understanding of how it depends upon n and {p,},. System throughput can be measured by the
fraction of non-repetitious transmissions and can be expressed as 1/, . Characterizing system



throughput as a function of the number of users, n, is a common way to benchmark the performance of a
system design.

In the heterogeneous case, with g, =1 p, , we have
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For small n, it is a trivial matter to evaluate (1) using a computer. However, when n is large numerical
evaluation is problematic due to the alternating series of terms that can get quite large and never become
negligible. For the heterogeneous case, the computational complexity is a severe problem. In addition,
direct evaluation of (1) is not a scalable solution since each term of the series involves a combinatory
number of terms.

1.2 Related Work

Applications related to ours have been encountered in several other domains, although often with the
simplifying assumption of equal p, values. Weiss (1962), for example, discusses a context where
homogeneous redundant elements perform a task at discrete time intervals. Each element was assumed to
have a constant probability of success and the expected system life is of interest. Margolin and Winokur
(1967) formulate the homogeneous problem in the context of an inverse sampling scheme where X,

denotes the number of trials required for the i-th entity to succeed and s, represents the number of

stages of sampling required for each entity to finally succeed.  Flajolet and Martin (1985) discuss the
homogenous problem in the context of the analysis of various database processing algorithms, including
estimating the cardinality of a set. Szpankowski and Rego (1990) dealt very thoroughly with the
homogeneous problem when analyzing the performance of concurrent programming methods.

It would be natural to try and utilize extreme value theory to approximate the mean of X . However, it

is well known that in the homogenous case a limiting distribution does not exist [see, for example,
Anderson 1970)]. Clearly the heterogeneous case would not yield to asymptotic theory since the
parameter space is grows as rapidly as n. Szpankowski and Rego (1990) used Cauchy’s residue theorem
from complex variable [see, for example, Henrici (1975)] to approximate the alternating series in (1) and
arrive at a large n approximation

Hgy = loggn + y/L + 0.5 (2)

where Q=q™", L=1logQ and A=0.577... is the Euler constant. The approximation in (2) is simple to
use and n does not have to be that large for it to be accurate over a wide range of p. Letting a(zn) denote

the variance of X, and using 5(2n to designate the homogenous case, Szpankowski and Rego also

)
showed for large n

5(2n) = 72/(6In°Q) + 1/12 . (3)
It’s of interest to note that (3) does not depend upon n. Kirschenhofer and Prodinger (1993) extended the
approximations of Szpankowski and Rego to cover the d-th order statistic, X, and Grabner and
Prodinger (1997) further extended the approximation to cover the case where X, has a negative binomial
distribution.



2. Approximations

Our proposed approximations for the case of general p, values take the form
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where k is selected based on prespecified ¢ -level of accuracy. We show that the required value of k for
£ -level of accuracy of the approximation for the mean satisfies

k > Max{—logqm(n—z),Iogq(n)[(l—q(zn))glcz”]“z} . We provide a similar bound for k that

guarantees ¢ -level of accuracy of the approximation for the variance. In each case, the critical value of k
depends on n and ¢, . Table 1 tabulates the critical values of k for alternative combinations of

(N Geny) -

%o 20 50 100 200
0.1 3,5 3,6 3,6 4,7
0.2 4,7 4,8 5,9 5, 10
0.3 5, 10 5,11 6, 12 7,14
0.4 6, 13 7,15 8, 17 9,18
0.5 8, 18 9,20 10, 23 11,25
0.6 11,25 12,29 14, 32 15, 34
0.7 15, 38 18, 43 20, 47 22,51
0.8 25 ,66 29, 74 32, 81 35, 87
0.9 55, 158 64, 176 71, 189 77, 202
3. Application

Returning to the broadcast transmission system design problem introduced in Section 1, we utilize the
approximation for 4, to develop an insight for the performance of the system. Figure 1 shows three

cases of system throughput curves, computed as 1/, . The value of 4, was approximated using

k=4. Inthe first case, the p; are equally spaced on [0.85,0.99], in the second case they are equally
spaced on [0.95,0.99] and in the third case they are all equal to 0.99. In the first case, where some of the

users have relatively low probabilities of packet reception, the number of simultaneous users the system
can support and still provide at least 50% throughput is 21. In the second case, where most users have
relatively high packet reception probabilities, the system can support up to 40 simultaneous users and still
provide at least 50% throughput. In the final case, when all users have a high probability of receiving the
packet, the system can support up to 337 simultaneous users and still provide at least 50% throughput.
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